
7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  

Loughborough University – 20th - 23rd April 2009 

A System of Systems perspective on 
Open Source Software Projects 

 
Mr. James Cowling1 and Dr. Robert Cloutier2 

 
1 Stevens Institute of Technology, USA, jcowling@stevens.edu 

2 Stevens Institute of Technology, USA, robert.cloutier@stevens.edu 
 
Abstract   
In recent times new forms of development enterprise have come to prominence, notably open source software projects (OSSPs), 
that appear to be difficult to successfully recreate. This paper applies a System of Systems (SoS) perspective to bring to the fore a 
possible framework for underpinning the establishment of OSSPs. A SoS emerges from a collection of diverse highly inter-
connected yet autonomous component systems, that participate to further their own and SoS objectives [1]. Comparing and 
contrasting SoS characteristics with the essential features of OSSPs, namely decentralized governance, community diversity and 
evolutionary development, offers the potential for deeper understanding of OSSPs. Viewing OSSPs as the combination of 
independent development efforts shifts the focus from observing the behaviour of the OSSP as a whole to that of the interactions 
of a community of contributors. By considering OSSPs in this way it may be possible to develop a conceptual framework. Such a 
conceptual framework would capture the fabric of these projects, offering a potential lever for their successful formation. 
Key words – Open Source Software Projects, System of Systems, Governance, Framework  

1 Introduction 
Today’s enterprises are increasingly interconnected and rely 
on a wide range of interrelated systems of varying 
provenance. These “legacy” systems are modified and 
integrated together with new capabilities over time to form 
Systems of Systems (SoS) in the support of enterprise 
objectives. These SoS have been described with a set of 
characteristics that distinguish them from ‘mere systems’ 
[1] and suggest traditional System Engineering approaches 
are inappropriate for their creation. 
 
In recent times new forms of system development have 
come to prominence, particularly open system development 
approaches. The bane of adopting the open system 
development approach is the apparent difficulty with which 
projects based on this method are recreated successfully. 
The reason that success is illusive may be because of an 
inability to grasp the essential features of the development 
system itself and hampered by a lack of a sufficient 
framework for its understanding. 
 
System Engineering is traditionally viewed as a rather 
linear sequence of capturing and describing requirements 
that leads to the development of an architecture, designs, 
and concludes with construction of system components. 
Once the components of the system have been created a 
similarly linear process of integration and testing concludes 
with user acceptance of the complete system. Open system 
developments such as Open Source Software Projects 
(OSSPs) diverge significantly from such an approach in the 
way they create software applications and in the 
establishment of the OSSP itself.  The methods for 
establishing successful OSSPs are likely to remain illusive 
if we apply a ‘mere system’ model to its understanding. 
 
 

 
However, OSSPs appear to share similarities with 
characteristics associated with SoS, the investigation of 
which may begin to reveal the conceptual framework 
underlying open system developments. The intent of this 
research is the investigation to determine whether a more 
detailed understanding of the fundamentals of the open 
system development approach may in turn inform the 
development of a methodology for SoS engineering.  

2 The System of Systems Concept 
Taken together, five characteristics allow us to describe a 
SoS as collection of highly inter-connected component 
systems, of diverse capability, each with a high degree of 
autonomy, that invest in the system, which emerges from 
the combination of those components, to further their own 
and the system’s objectives. [1] 

2.1 Autonomy 
A system is brought into existence to perform some 
function and is essentially ‘free’ to fulfil that function, 
defining autonomously how it will pursue its purpose. The 
same is not true of the parts that make up a system. Parts 
are selected to meet the needs of the system, and are only 
included in the system if the system deems them necessary 
to the performance of its function. The part is given purpose 
by its inclusion in the system, on it’s own, outside the 
context of a system it serves no purpose. [1] 

2.2 Belonging 
While the components in a SoS display a high degree of 
autonomy they are not completely autonomous. The SoS 
makes demands of them such that it is necessary that the 
component system sacrifice some of its ability for self-
determination, at least in terms of how it contributes to the 
SoS. Clearly the SoS is also modified by the inclusion of 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  
 

Loughborough University – 20th - 23rd April 2009 
 

the component system and this conjoining happens with 
consideration and negotiation. But one must not forget that 
the SoS represents a collection of component systems and 
therefore the negotiation takes place between each of the 
constituents. The negotiation that takes place when a 
component system joins the SoS centres on the cost 
(relinquishment of self determination) each component has 
to pay for the benefit to their own purpose and that realized 
by the resulting SoS. Each component system therefore 
determines the return on investment that would be gained 
by belonging to the SoS. [1] 

2.3 Connectivity 
When designing a system its parts and their connectivity are 
considered simultaneously, but this is not possible for a 
SoS. The constituent systems already have their 
connections defined and yet it is necessary for them to 
support interoperability with other, previously unassociated 
systems. New connections must therefore be supported that 
imply an altered boundary for each of the constituent 
systems. The systems, displaying both autonomy and 
belonging, have a decision to make in respect of which 
connections they will support to enable the achievement of 
SoS (and their own) objectives. [1] 

2.4 Diversity 
A SoS should have much higher diversity amongst its 
constituent systems compared to that of the parts, which 
have limited diversity by design, within a mere system. 
Diversity allows great adaptability, in the face of new 
environments and capability needs, for the SoS. Increased 
diversity is achieved by enabling autonomous systems to 
join together through open connections to form the SoS. [1] 

2.5 Emergence 
In coming together the whole is greater than the sum of the 
parts.  The collection of constituent systems does not 
constitute the construction of the SoS that is brought into 
existence. It is during the process of gathering together that 
the SoS structure is created. The relationships between 
constituent systems are defined by cost/benefit trade offs 
each makes autonomously in deciding whether to belong to 
the SoS. The resultant connectivity within and capability of 
the SoS is not necessarily predictable as it is dependant on 
the relationships the decisions the constituent system make. 
[1] 

3 Open Source Software Projects 
The open source software movement that has emerged and 
grown over the last decade or more may now represent a 
viable alternate to prevalent commercial software practices. 
Although it is often presented as offering the potential of 
producing better software, quickly and cheaply, OSSPs are 
fundamentally different in both organization and 
development process [3], [5]. 
 
OSSPs are resourced by potentially large numbers of 
geographically dispersed, predominantly volunteer 

contributors who select for themselves the task they will 
perform based largely on their own interests and skills [3], 
[5]. Developers are attracted to join the community by a 
complex collection of motives including creating needed 
features, learning new skills, philosophical beliefs, 
enjoyment of freedom to be creative, and sometimes 
political statements about non-open practices [7]. 

3.1 OSSP Development System Lifecycle 
Early in the OSSPs lifecycle a relatively small community 
(maybe an individual) begins developing code. Depending 
on the size and pedigree of this early developer group 
project structures maybe agreed, however, more than likely 
they emerge over time as the project grows. Once the 
project has been successfully initiated, sometimes signalled 
by a first stable release of code, it enters a period of growth 
as it attracts greater numbers of contributors until it reaches 
it’s maximum size. The growth phase is often followed by a 
period of decline in which developers leave the community. 
The decline in numbers of contributors can result in the 
collapse of the project with too few to sustain development. 
Alternatively, the project may undergo a revival and enter a 
period of sustained improvement. [4] 

3.2 OSSP Governance 
The manner in which a project is governed typically 
develops as the size of the community expands. While the 
project remains relatively small it is easy for decisions to be 
made and consensus to be reached, but this does not scale 
well and growing projects are therefore driven to establish 
decision mechanisms. Over time most project governance 
has been seen to mature from initially resting with its 
members to the emergence of meritocracies and voting 
structures [7]. An open source approach is critically 
dependant on allowing all points of view to be plausible in 
pursing a course of action and to this end great care is 
required to ensure the formalization of governance 
structures do not undermine the projects “openness” [7]. 
Structures that are designed to maintain the position of 
long-standing members over newer, regardless of 
competence, may result in preventing the introduction of 
new ideas and reduce the projects likelihood of entering 
revival phase of its lifecycle. 
 
In open source projects a minority of the community 
produce the majority of the code and are likely to emerge as 
the community leaders during the early phases of the 
project [2]. As the project grows not only do the 
contributions of more developers need to be coordinated but 
also the organizational complexity increases as it is divided 
into ‘manageable’ size modules each with it’s own 
responsible sub-group [5]. As the project structure becomes 
more complex procedures become formalized and the early 
leaders could find themselves at the head of a hierarchy [2]. 
As For this hierarchy to not damage the project it must 
preserve the plausibility of each contribution [6]. The 
maturing of successful open source project’s governance 
has been seen as a move from direct, where decisions are 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  

Loughborough University – 20th - 23rd April 2009 

shared equally amongst the community, to representative 
democracy [7]. 

3.3 Contributors Motivations 
The roles undertaken by the participants in an OSSP can be 
characterised by the nature of their contributions. “Bug 
fixers” who form the vast majority of a project community, 
identify bugs and occasionally propose patches are 
extrinsically motivated (they desire working code) [4], [7]. 
“Programmers”, a much smaller, highly contributory group 
are more tightly integrated into the project governance 
structure [4]. Programmers are either motivated by 
improved personal reputation, optimization of the code or 
both and therefore display a mix of intrinsic and extrinsic 
motivations [4], [7]. The projects founders or the most 
experienced programmers become the project’s “leaders”, 
the smallest proportion of the community [4]. Leaders take 
responsibility for strategic focus of the project and head the 
governance structures [4].  
 
Bug fixer’s and programmer’s motivations remain fairly 
constant throughout the lifecycle of a project, however 
those of the leaders change as the project progresses [4]. 
Initially, the founders are mostly intrinsically motivated but 
as the project grows those in leadership position become 
more extrinsically focused. By the time the project reaches 
maximum size the leaders are almost entirely extrinsically 
motivated [4]. The shift from intrinsic to extrinsic focus 
seems entirely consistent with a need to create a vision with 
which to establish and grow the project. However, after 
maturing to its largest size, if the fall in numbers is not to 
result in collapse the leadership must again become 
intrinsically motivated [4]. 

3.4 OSSP Infrastructure 
OSSPs use none of the coordination mechanisms associated 
with more traditional approaches such as a schedule, or 
architecture [5]. Individuals self assign themselves to 
develop functionality thy feel is required and contribute on 
a voluntary basis, without guidelines regarding time and 
intensity of work. As such there is typically no project 
manager, product breakdown structure or project plans. [4], 
[3] 
 
The lack of prescriptive architecture or project plan may 
enable OSSPs to readily adapt to new innovation or more 
optimally functional software. However, without these 
coordination tools participants must be able to 
communicate readily at low cost in terms of the expense 
and effort required. Increasing the diversity of the 
contributors by reducing the barriers to participation further 
enhances this adaptability. As a result most open source 
software projects utilize a limited set of common tools and 
readily accessible, Internet based asynchronous 
communications mechanisms (e.g. mailing lists) [3], [4]. 

3.5 OSSP Processes 
Lack of a predetermined set of requirements prevents the 
development of an architecture in the traditional sense and 

often there is no explicit system-level design, or detailed 
design that the developers work to. OSSPs instead rely on 
the community exposing requirements as a result of 
previous developments, either in the form of indentifying 
bugs or opportunities for additional functionality. Once 
requirements are identified it is the willingness of the 
programmers to develop a solution that drives the OSSP 
change control process. [3] 
 
While OSSPs do not create an architecture per-se, the fact 
that they are typically a collection of highly distributed 
developments does necessitate certain architectural 
principles to ease integration. Most prevalent of these 
principles is that of modularity required to allow the 
combining of components developed separately and new 
features to be added as new requirements are identified. [5] 
 
Many developers produce solutions to the requirements 
they wish to work on and the design emerges as a result of 
the best combination  (as determined by the community) 
over time. In essence many competing solutions are 
developed, integrated together and a process of natural 
selection takes place. [5] 
 
Periodically the best code and new functions will be 
collated into an “official” release that is made widely 
available for distribution. During this process new 
functionality is only included in a release if it works with 
the rest of the application. Code is rarely modified during 
the integration phase to make it fit into the application and 
this reinforces the modularity principle. Once the release is 
made available to the community the next round of 
improvements begins with exposed bugs and functionality 
requirements. [5] 
 
This iterative development and improvement based on 
community selection of optimal code modules and 
operational usage results in the software “evolving” from 
one release to the next. 

4 Essential OSSP Features 
The critical indicators of a project’s openness appear to be 
the establishment of decentralized democratic structures 
during the project’s growth phase (as opposed to the 
formalization of a hierarchy to reinforce individual’s 
positions), a highly diverse community (may have the 
potential to create a greater number of viable alternatives to 
sustain an evolutionary development than one with low 
diversity), and a development process (requirements, 
release management, etc.) that supports an 
evolutionary/iterative application lifecycle (that supports 
the ‘natural selection’ of successive optimal solutions as 
opposed to a planned or prescriptive linear lifecycle). 
 
The volunteer status of contributors is often highlighted as a 
feature of OSSPs, however, many leading projects do have 
a paid staff (e.g. Mozilla is supported by the Mozilla 
Foundation). It may be that to be successful a proportion of 
participants are employed purposefully to contribute to the 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  
 

Loughborough University – 20th - 23rd April 2009 
 

project. For the purposes of this paper the effects of 
volunteerism have not been considered an essential feature 
of OSSPs, although it is recognised as a potentially 
contributory factor to achieving high diversity.  
 
The majority of projects hosted on sourceforge.net appear 
dormant while a few prosper; it would appear the 
infrastructure that supports both is not the distinguishing 
feature and therefore is not considered further here. While 
the infrastructure and tools that connect participants are 
important to any open system, this paper proposes that it is 
the nature of the interactions themselves that is vital. 

4.1 Governance – Decentralized decision making 
Most open source projects have a meritocracy of developers 
that emerges based on competence, experience and 
community respect [2], [7]. Often the most influential 
developers in a project are those who joined during its 
initiation and where subsequently “elevated” as the project 
grew and governance structures where established [2], [7]. 
However, to remain a viable OSSP the project governance 
mechanisms must allow and recognize contributions from 
the whole community [6]. The approach the leaders take in 
setting strategic direction for the project may either lead to 
a move away from this inclusive approach or facilitate a 
more open, decentralized organization. Therefore the most 
open organizations are those that achieve maximum 
decentralization. This decentralization enables greater 
optimization at various levels within the project and is 
therefore also a factor in the projects ability to evolve and 
innovate. 

4.2 Community – An “organic” community 
A non-organic project is one in which most of its members 
(particularly leaders) are affiliated with each other (outside 
of project activities) through some external entity and seek 
to control the project to the benefit of that entity. For 
example, the Open Solaris project has been criticized 
because of the highly influential Sun employed developers 
that are perceived to further only Sun’s objectives, 
presumably to the perceived detriment of the rest of the 
community. For the purposes of this research it is proposed 
that an organic project is one in which no external 
affiliation attempts to exert a controlling influence beyond a 
desire to see the project succeed. Infrastructure, project 
complexity, technical skill level, and specialism maybe 
factors that effect diversity of a project but efforts should be 
made to limit unnecessary bars to entry into the developer 
community. Greater diversity also increases the potential 
for innovation. 

4.3 Development – Iterative, evolutionary processes 
Requirements management, sustained product improvement 
and release control are factors in determining a projects 
evolutionary nature. In the most open of projects a 
requirement can originate from any community member, 

receive mutual agreement (or rejection) by the community 
and can be satisfied by any developer [3], [5]. Adherence to 
component structures and interfaces are encouraged to aid 
incremental development and release configuration [5]. For 
the resultant application to be viable for users it must 
remain ‘healthy’ supporting the rapid resolution of bugs, 
adapt to new uses and operating environments. This 
culminates in release management process that delivers new 
versions at a rate that keeps pace with users changing 
needs. 

5 Applying the SoS concept to OSSPs 
Applying the SoS concept to OSSPs is a novel approach 
and will be explored next. If one considers an OSSP to be a 
network of contributors, each of wide ranging software 
development motivations, that under take coding tasks of 
their own devising to further their interests that are, to some 
degree, in common with those of the community. It is then 
possible to describe OSSP essential features in terms of the 
of the SoS characteristics (as shown in table 1). 
Subsequently it is possible to create a definition of subtly 
different emphasis where the OSSP emerges as a 
consequence of the contributor’s interactions as follows: 
 
OSSP participants enjoy the freedom of self-tasking and 
contribution determination which, when combined with 
those of other independent participants, fuels the 
development process and determines the structure of the 
project. By exercising self and social controls, contributors 
aim to comply with and sustain the project with a culture 
that will secure their return on investment, gaining a highly 
functional application they may not have been able to 
create themselves. Although highly respected members 
serve to sustain strategic direction it is the diverse range of 
viewpoints held by the community members that creates 
innovative variety within the project. While the act of code 
creation remains a largely solitary pursuit the well-
connected developers share experiences and results for the 
benefit of the entire community, enabling selection of the 
best of solutions as the resulting application evolves. 
 
By considering an OSSP in this way the focus is shifted 
from observing the behaviour of the project as a whole to 
that of the interactions of a community of individual 
contributors. It is much clearer in this description that 
project characteristics emerge when the community comes 
together and as a result of that togetherness. Thus it is not 
the OSSP structure that allows individuals the freedom they 
enjoy; rather contributors exercising their freedom create 
the project structure. Put differently, the OSSP exists as a 
result of the contributor’s interactions not as a precondition 
to facilitate them. This feels somehow obvious or natural. 
Considering the OSSP as a ‘mere system’ may have 
clouded observers by encouraging thoughts of project 
structure design as opposed to the emergence of complexity 
from the simple interactions of participants. 

 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  

Loughborough University – 20th - 23rd April 2009 

 
Table 1 – Application of SoS Characteristics to the OSSP Essential Features 

 

6 Establishing an OSSP 
When systems are constructed it is typical to think of the 
system level characteristics of that system, the functions it 
will perform and its proficiency, before, or at least at the 
same time as consideration is given to the inner workings of 
its components. Occasionally systems are constructed from 
available components but even then they are assembled 
with a vision of the resulting system in mind. In either of 
these bottom up or top down system development 
approaches the engineer has control over how the 
components will be brought together to form the system. 
This is not the case with the emergence of the OSSP 
development system. 
 
For the OSSP it is the community members that define the 
functionality and performance of the development system, 
not by deliberate design and recruitment but merely through 
their participation in project’s software development. If the 
community where to attempt to design and construct their 
system upfront the very thing they we striving for could be 
lost as it can only emerge through participation. Focusing 
on the project structure rather than creating conditions 
conducive to participation may be one reason open system 
developments appear so hard to re-create. Conversely, it is 
difficult to see how a fledgling community forms without 
some concept of structure to form around. 
 

 
 
To seek a resolution to this conundrum we need to return to 
the earlier description of an OSSP lifecycle and consider 
the initiation stage of the development system. OSSPs 
typically start either by a very small group, possibly a 
single developer, or in a closed development system such as 
a corporate software house. For the single developer the 
development process maybe more ad hoc and for the 
corporation much more regimented, but nevertheless in 
either case the development system likely has a determined 
structure in this ‘pre-community’ stage. The challenge, 
therefore, could be in transitioning from the ‘closed’ to 
‘open’ states.  
 
The danger is for the original development system to “feel” 
that others are joining it as opposed to the ‘original’ and 
‘new’ contributors joining with each other to form a new 
development system. Although a project that maintains the 
original development system may achieve some success in 
the short term, over time, not moving to a more open 
construct may potentially prevent the project entering the 
desired sustained improvement state. 
 
This is not to say that contributors actively renegotiate the 
OSSP development system each time the membership 
changes, the chances are they are unaware of a structural 
change occurring. There is also a dampening effect as those 

 Governance Community Development 
Autonomy The community creates a 

culture which requires self 
controls that are reflected, 
sustained, reinforced and 
exercised by social controls 

Each contributor undertakes activities 
that suit their skills, interests and 
satisfies their own motives 

Multiple self tasking contributors 
creating multiple variations and 
versions of software functionality 
is necessary for the OSSP 
development process itself 

Belonging Seniors in the meritocracy 
provide strategic direction 
for the OSSP 

By giving time, effort and expertise to 
the OSSP contributors gain access to 
collective support of the community 
and breadth of functionality they may 
not otherwise 

Contributors join the OSSP to be, 
fundamentally, involved in the 
creation of freely available 
software functionality 

Connectivity Rapid and wide exchange of 
ideas, experience and 
software across the 
community enables project 
decision making 

Critical to cohesiveness is community 
wide communication that establishes a 
shared purpose 

Continual reconfiguration and 
integration of new functionality 
engenders collective knowledge 
in each of the contributors 

Diversity A wide variety of view 
points drives the exploration 
of the problem space and 
the creation of plausible 
solutions from which to 
select 

A broad range of participants assists 
innovation and variety of functionality 
created 

An extensive collection of 
plausible solutions and reviewers 
underpin the OSSP development 
process  

Emergence Larger, successful OSSPs 
tend to develop, over time, a 
form of representative 
democracy for decision 
making 

The community changes over the 
OSSP lifecycle – the community 
changes the OSSP objectives while the 
functionality needs attracts/dissuades 
contributors – hitting a ‘sweet spot’ is 
required for sustained productivity 

Community decision of the best 
fit functionality, over time, 
establishes an evolutionary 
development system – ‘natural 
selection’ 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  
 

Loughborough University – 20th - 23rd April 2009 
 

joining are likely to comply, to some degree and at least 
initially with the existing norms. Therefore any changes 
new members may bring could be subtle or exercised over 
an extended time as they become more established within 
the community. The impact of membership change may be 
more apparent in small projects, but in general it is possible 
that each contributor can only perceive their interaction 
with the community and has no macro view of the 
community structure. 

7 Engineering an OSSP 
By applying the SoS concept we can see that the 
development system that is the OSSP has to be allowed to 
emerge, not only from its (potentially) closed form but also 
from the community itself. The OSSP, in some sense, 
cannot be engineered directly if it is to emerge, however 
conscious effort is required if the emergent system is not to 
return to the apparent predictability of a less open approach. 
By considering the OSSP as a collection of contributors and 
focusing on how those contributors participate to form the 
project it may be possible to develop a conceptual 
framework. The conceptual framework would describe ‘the 
space between’ the contributors, the fabric and essence of 
the project. Such a framework could offer the potential 
lever for shaping a project and the promise of an 
engineering mechanism.  

7.1 A framework for OSSPs 
The framework should not be a set of rules. Rules will be 
broken so need adjudication, which potentially leads to the 
creation of a hierarchy and centralization. Once the project 
governance structure becomes centralized it is no longer an 
OSSP, according to the essential features, and may have a 
tendency toward collapse in the longer term. Instead the 
framework could be more usefully thought of as guiding 
principles that the community aspire to. 
 
Guiding principles for an OSSP could be based on or 
derived from the essential features introduced above and 
potentially expressed in the following ways: 
• The community, particularly leaders in the early 
stages should resist to the formalisation of a hierarchy or 
adoption of command and control structures. Meritocracy 
should give way to representative democracy. 
• The community should enable, certainly not 
prevent a variety of leaders to come to prominence and take 
the various aspects of the project forward 
• Self-controls should be encouraged and social 
controls relied upon to not only create a more cohesive 
project but one that is able to respond to disruptive 
behaviour quickly without the delay or potentially divisive 
adjudication process 
• Entry and “acceptance” into the community should 
be as constraint free as possible to encourage the greatest 
possible diversity 
• The principle of self-selecting code development 
task, and iterative product release must be preserved 

7.2 Defining a framework 
The need for a framework is somewhat paradoxical. A 
young, small project (say of three contributors) is unlikely 
to benefit from having a framework instead relying on more 
ad hoc structure that suits all the contributors. Likewise a 
mature, large project (of 3000 or more) is of sufficient 
capacity that the principles of openness are engrained and 
self-sustaining such that the burden of consciously 
maintaining a framework may become divisive. 
 
The critical stage for an OSSP appears to be the period of 
decline it goes through prior to either revival or collapse. It 
could be that a factor determining the achievement of 
sustained improvement state and collapse is the degree with 
which openness has taken root at this point. Either way, it is 
probably too late to begin framework establishment during 
the decline phase, the likely tendency would be towards a 
“who’s going to do what” mentality in the face of falling 
numbers. This could result in a move further away from 
openness and increase the likelihood of collapse. Much 
better to have the framework in place so that ‘closed’ 
principles that could condemn the project to collapse, or at 
least hinder its recovery, are avoided. 
 
The period during which the project grows to its maximum 
size therefore appears to be the most opportune time for 
developing the framework and, if purposeful engineering of 
an OSSP is possible, the most effective. During this period 
thoughts are likely to be of growing the community to 
increase code production and diversify solutions ultimately 
leading to improved functionality. In essence open qualities 
are likely to be most highly valued during this period, and a 
framework that enhances those qualities is more likely to be 
accepted. 

8 Conclusion 
Rather than try and discern the structural characteristics of 
successful projects, developing an understanding and 
classifying the characteristics of each contributor’s 
participation within a successful project may be more 
fruitful. The structure of a project may be dependant on the 
field of endeavour, problem space and the community, 
where as the framework underpinning successful projects 
that have emergent structures is potentially much more 
transferable.  
 
It is unlikely that project’s frameworks are written down, 
rather it is held in the collective perceptions of the 
community, so identifying the characteristics of successful 
frameworks may be challenging. Nevertheless, the impact 
of the framework that is established during its growth 
period on the project’s ultimate collapse or revival seems 
worthy of further research. 

9 References  
[1] Boardman J.T., Sauser B.J. (2006), Systems of Systems 
– the meaning of of, Proceedings of the 2006 IFF/SMC 
International Conference on Systems of Systems 
Engineering, Los Angeles, CA, USA, April 2006 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  

Loughborough University – 20th - 23rd April 2009 

 
[2] de Laat, P. B. (2007), Governance of open source 
software: state of the art Journal of Management & 
Governance, v 11 no 2, pg 165-177 
 
[3] Gurbani, V. K., Garvert, A., Herbsleb, J. D. (2006), A 
case study of a corporate open source development model, 
Proceedings - International Conference on Software 
Engineering 2006,  p 472-481 
 
[4] Lattemann, C., Stieglitz, S. (2005), Framework for 
Governance in Open Source Communities; Proceedings of 
the 38th Hawaii International Conference on System 
Sciences 2005 
 
[5] Mockus, A., Fielding, R. T., Herbsleb, J. D. (2002),Two 
case studies of open source software development: Apache 
and Mozilla, ACM Transactions on Software Engineering 
and Methodology, v 11, p 309-346 
 
[6] O’Mahony, S., Ferraro, F. (2007), The Emergence of 
Governance in an Open Source Community, Academy of 
Management Journal; v 50 no. 5, pg. 1079-1106 
 
[7] Shah, S. K. (2006), Motivation, Governance, and the 
Viability of Hybrid Forms in Open Source Software 
Development, Management Science; vol 52 no. 7; pg. 
1000-1014 


