NPD Trends and Practices

Robert Cloutier

Portia Crowe

Case History

The U.S. Army updates its
readiness reporting system
using an “Agile” approach in
a challenging environment

Portia Crowe, Chief Engineer of the U.S. Army Defense Readiness and
Projection Systems (portia.crowe@us.army.mil); Robert Cloutier, Ph.D.,
Associate Professor, School of Systems and Enterprises, Stevens Institute of
Technology (robert.cloutier@stevens.edu)

The United States Department of Defense (DoD) faces many challenges, especially when it comes to the development of software systems
and programs. One critical challenge is how to share information for operational capabilities rapidly in complex environments within a
system that bridges legacy and new technologies. The authors explain how a product development team within the DoD achieved this
goal using an Agile approach to upgrade every aspect of one particular program throughout every phase of the program’s life cycle while

that program continued to be operational.

Defense has used Agile lifecycle processes in the development

and upgrade of critical systems and programs. It will describe
how our development team created an evolutionary acquisition
strategy using Agile lifecycle processes. We are sharing our lessons
learned in hopes of helping others do the same when working with
similar challenges.

This project of upgrading the U.S. Army “readiness reporting sys-
tem” took place in an environment where requirements are unfore-
seen and quickly changing. (See Box for definitions.) Under those
circumstances, we needed our systems to be flexible and adaptable.
Before 2006, it was clear that the existing reporting system was
no longer meeting the
needs of commanders
to provide the timely
and detailed data on re-
sources (i.e. personnel,
training level of com-
pletion and equipment)
for making informed
decisions. Commanders
were operating in a more
complex [T environment.
The challenge we faced
was to transform an old
Army readiness system to meet current needs while also developing
key functions currently needed by commanders—without losing
existing capabilities and within a nine-month period.

The Product Manager Strategic Battle Command worked with the
Headquarters—Department of the Army G3/5/7 on this. The solution
our team came up with—to modernize the legacy Army readiness
application, PC ASORTS—was to create the Defense Readiness
Reporting System-Army (DRRS-A).

The objective was to create the DRRS-A which, once completed,
would align with Service Oriented Architecture (SOA) strategies
and support the demands of new requirements, capabilities, and
modifications in the areas of force registration, force readiness,
force projection, and mobilization. The DRRS-A team included
about 60 people from the government and multiple contracting

This article provides an example of how the U.S. Department of

llenge we faced
ansform an old Army
system to meet
eds while also

g key functions

y commanders.”

PDMA VISIONS MAGAZINE

teams. We selected a phased-approach strategy, which allowed the
deployment of high-priority capabilities first and then subsequent
capabilities using an incremental process.

Defining the objective in detail

Our challenge was to take an Army readiness reporting system
that had existed for 12 years and modernize, deploy, and support its
new capabilities within nine months. We used “rapid prototyping
and deployment” to do this. Such a challenge meant many hurdles
for our multiple contract teams who were beholden to many stake-
holders, not to mention having to be rigidly adherent to changing
requirements in a complex wartime environment. These Agile and
rapid fielding initiatives led us to several revelations of the rapid
prototyping and development approach. We found some key char-
acteristics that are outlined in Exhibit 1 on page 14.

Rapid prototyping and deployment challenges included develop-
ment of a new set of capabilities that didn’t exist in the old system,
and training and retraining a large user community while building

Definition of Terms Used by the
U.S. Army for the Development
of DRRS-A Program

e “Agile” methodology: Methods that encourage frequent,
iterative, and constant adaption through teamwork and
self-organization.

e Defense Readiness Reporting System-Army (DRRS-A): A
secure web-based software system that allows soldiers to
report their current readiness, registration, projection and
mobilization status for higher commands.

e PC ASORTS: The legacy system in place before DRRS-A
went into effect.

e Service Oriented Architecture (SOA): A set of principles of
governing concepts used during development and integration
that require loose coupling of services.

OCTOBER 2009 13

software and testing. New functionality included embedded work-
flow process, identity management, and Web access using the Se-
cure Internet Protocol Router network. We also had to gain security
certificates and authority to operate; because of the generally long
lead time in getting approvals, we planned for these issues in the
beginning stages. The stakeholders treaded in unfamiliar territory
by collaborating closely with users and by knowledge sharing with
other contractors. Risk management was a collaborative effort that
emphasized the software development phase. The greatest challenge
was to develop, train, and conduct integration testing with multiple
contractors in nine months.

Preview of the success

We achieved our objective: The DRRS-A software system
was first deployed in late 2006—after only nine months of
development, and new
capabilities were added
incrementally as soon
as two months later.!
The DRSS-A program
consists of secure Web-
based capabilities such
as unit status reporting
which details mission-
critical information, in-
cluding personnel levels,
training status, equipment availability, and equipment serviceability.
It is used as a commander’s assessment tool, as it reports a unit’s
capability of executing missions. Using an evolutionary strategy, the
legacy application was a stepping stone for the development of new
capabilities and rapid, yet disciplined, transition of processes.

an evolutionary

the legacy

on was a stepping
the development of
bilities.”

Exhibit 1: Emergent Agile Characteristics
For Rapid Prototype and Development

Characteristics Comments

Liberty to be dynamic Agility needs dynamic processes
while adhering to acquisition

milestones

Non-linear; Cyclical and
non-sequential

Lifecycle behavior not like traditional
waterfall models or linear frameworks;
decreasing cycle times

Adaptive Conform to changes such as capa-

bility and environment

Simultaneous development
of phase components

Rapid fielding time may not lend
to traditional phase containment
(i.e. training and SW development
together)

Ease of change Culture shift to support change
neutrality; ease of modification built

into architecture and design

Short iterations Prototyping, demonstrating and
testing can be done in short iterative

cycles with tight user feedback loop

Lightweight phase attributes Heavy process reduction such as
milestone reviews, demonstrations,

and risk management

SOURCE: U.S. Army

14 OCTOBER 2009

Details on our “Agile” approach

The DoD embraces change after a long history of “waterfall”
software and single-step methods to full-capability approaches.
By “waterfall” we mean that each iteration or upgrade was done
separately. The goal of DoD’s Evolutionary Acquisition policy
was to provide operational capabilities to the soldier more quickly
than than those types of traditional methods through what we refer
to as “rapid incremental fielding”—upgrades and harmonization
done in such a way that it can be continuous.?

The DRRS-A implementation plan included using the DoD
Evolutionary Acquisition (EA) approach as a guideline for de-
livering capabilities in increments. Our evolutionary strategy
required taking the existing readiness system and modernizing
it in a phased approach, which included leveraging functionality
inherent in the old system and translating it into usable functional-
ity in a Service-oriented architecture (SOA) combined with serial
guidance and directives issued by the Joint Chiefs of Staff. Today,
DRRS-A currently has as many as 5,000 users, including Army
Commands, the National Guard Bureau, Army Forces Command,
and the United States Army Reserve Command (USARC).

Our methodology included integration of all aspects of program
lifecycle phases using an “Agile” approach with rapid prototyping
to ensure that the customer and user needs were met. We took a
linear lifecycle approach and worked lifecycle phases in parallel
and often at the same time. Working within an aggressive schedule,
we carried out continuous facilitation of the following phases:

e Concept refinement, requirements, and architecture analysis
and design.

e Capability and software development.

* Integration, testing, and demonstrations.

e Production and deployment.

* Operations, support, and training.

The user community consistently worked with the developers to
refine concepts and requirements to be developed. In a month, the
team could get as many as five new requirements and enhancement
requests from various sources, such as the readiness community
and the Joint Chiefs of Staff. New requirements can range any-
where from new calculations to new information required from
the user. During testing time, the team mainly focuses on fixes
and performance of the applications.

The rapid and iterative software development process included
conducting continuous integration and testing on a daily basis
through the use of checking in and out software code. “Scrum,” our
Agile process, was implemented in 30-day software-development
sprints using a prioritized requirements list also known as a backlog.
It helped keep the focus on user needs with demonstrations at the
end of each interval.’ In a month, the development and test teams
can work through as many as 15 requirements. The Scrum develop-
ment process* is shown in Exhibit 2 on page 15.

Atthe end of each development sprint, a team of six people would
develop or edit training materials and user guides, and train the help
desk on these features. The user community was trained on the new
or edited features via remote, computer-based, and/or face-to-face
training. The imposed user feedback loop gave us greater confidence
that we were building to expectations and user requirements. We
were in line with priorities as a result of canvassing for feedback
during biweekly iteration meetings, testing events, and surveys.’

To ensure continuous coordination, all of the functional leads (i.e.,
system engineers, development, logistics, and requirement proponents)
and key users were at every sprint review. This helped to keep the team

PDMA VISIONS MAGAZINE

in sync on new application features, training needs, in- ~ Exhibit 2:

Example Agile process flow for the “Scrum” development process

tegration and test events, and priorities of requirements.
Interoperability and integration testing was frequently
conducted not only at the subsystems level, but for
system of systems and external dependencies.

Prior to major releases, we found three to be the
magic number of user dress rehearsals or test events.
These allowed users to test functions of the applications

K Sprint Backlog: Racking obstacles?
and engineers to get a good read on the performance of Feature(s) items every 30 3) What will you do before
the system. Participants (usually 20 to 30 users) were assigned expanded days next meeting?
to sprint by team

chosen by the functions or applications being tested dur-
ing that event and the location of participants (such as
Iraq or Afghanistan), which gave us good performance
data. These testing events, each lasting three days, usu-
ally started three months prior to a big release and were

3
=

D Product Backlog:

Scrum: 15 minute daily

meeting.Team members

respond to basics:

1) What did you do since
last Scrum Meeting?

2) Do you have any

every 24
hours

New functionality
is demonstrated

Prioritized product features desired by the customer :
at end of sprint

about three to four weeks apart.

Coordination with participants, training, and test
procedures distribution occurred prior to each event. An online
survey was prepared for the users to track their issues and concerns
during the event. We recently added performance questions to track
how fast the functions were loaded and displayed. After each day
of the test event, a configuration control board met to discuss the
feedback, and developers began fixing or discussing problems with
the test event participants. This rapid-test approach allowed us to get
feedback and work out problems right away. Fixes were incorporated
into the next test event. Performance test cases were conducted with
up to 50 simultaneous users doing the same functions on the force
registration application. During this process, we found memory
leaks to be causing significant delays and were able to be proactive
in optimizing performance before the application went into the field.
Testing resulted in force registration application for unit registration
data performing five times faster when users access the most popular
functions of the application. Further application testing led to response
time improvements of up to three times. Performance enhancements
were made where applications may have many simultaneous users
in the United States and abroad.

Conclusion

The DRRS-A program was successfully developed and fielded,
including training and strong support, in nine months by using
incremental and Agile methodologies.® Subsequent releases have
been just as successful adding on existing capabilities and deploying
new ones. The success of DRRS-A and its net-centric capabilities
include improving user accuracy and ease of use, and decreasing
manpower and manual input.

For example, in terms of cost savings, the USARC has predicted
that savings from DRRS-A Web-based applications are expected to
reach more than $1 million annually. The Army Reserve Medical
Command has already saved an average of $118,933 per month. The
DRRS-A capabilities are part of the Defense Information System
Agency’s Net-Enabled Command Capability program and readiness
model for the U.S. Air Force and Marine Corps.

Program development and fielding brought the importance
of collaboration, communication, and risk management to the
forefront of the Agile development process. Here are a few of
the lessons we learned:

* A tight collaboration of several contracting teams, stakehold-
ers, and program offices is necessary to prove integration of
the right requirements into the software.

The setup of check points during the process is crucial to ensure

PDMA VISIONS MAGAZINE

SOURCE: “What Is Scrum?” Scrum: It's About Common Sense <http://control chaos.com/about>.

that development was meeting the customers’ needs.
Without the communication and involvement of stakeholders and
customers, there would be limited sharing and transfer of knowl-
edge which can hinder synchronization across the battle space.
Itis easy to concentrate on risk management in the software de-
velopment stage since it is the meat of the program, but lessons
learned have taught us that all the other lifecycle stages need to
be risk-analyzed and evaluated often during rapid development.
For example, training needs to be planned upfront and during
development or else there won’t be ample time to train the user
community. This, in turn, could lead to program failure.
During the project we proved—through cost and user acceptance
of this system—that life cycles can be developed and maintained
using Agile methodologies. With an aggressive schedule and high
program visibility, we broke traditional developmental and cultural
barriers by implementing an Agile and evolutionary approach to
rapid prototyping, development, and fielding. This approach proved
to be a critical aid in the creation of a positive knowledge-sharing
environment among contractors, as well as in developing a close col-
laboration between functional proponents and users—which in turn
laid the groundwork for success. Our Agile and flexible approach
to systems and software engineering allowed us to capture the true
essence of rapid prototyping and capability deployment while still
meeting budgetary, schedule, and customer satisfaction goals.

Endnotes

1. “Army to Modernize its Unit Status Reporting Processes.” Army
Stand-To! 10 Aug. 2006

<http://lists.army.mil/ pipermail/stand-to/2006-August/ 000136 .html>.
2. DoD. Department of Defense Directive 5000.1: The Defense
Acquisition System. Office of the Under Secretary of Defense for
Acquisition, Technology, and Logistics. Washington, D.C, 2003.

3. Boehm, Barry, and Richard Turner. Balancing Agility and Discipline:
A Guide for the Perplexed. Boston: Addison-Wesley, 2004.

4. “What Is Scrum?” Scrum: It’s About Common Sense

<http://control chaos.com/about>.

5. Hansen,W.J., et al. Spiral Development and Evolutionary Acquisition.
The SEI-CSE Workshop Special Report. SEI, Carnegie Mellon
University. May 2001

<www.sei.cmu.edu/pub/documents/01 .reports/pdf/01sr005.pdf>.

6. “New System Gauges Military Readiness.”” AFCEA Signal. 16

Oct. 2006 <www.imakenews.com/signal/e_000144589000039843.
cfm?x=b8fBhsr,b5kS6S>.

NOTE: A more detailed version of this article appeared in CrossTalk,
The Journal of Defense Software Engineering, May/June 2009 issue,
Vol. 22, No. 4, pp 15-17.

OCTOBER 2009 15

