
APPLICATION OF PATTERNS
TO SYSTEMS ARCHITECTING

by

Robert J. Cloutier

Lockheed Martin Corporation

Stevens Institute of Technology

Prepared for the 2005 Telelogic Americas User Group Conference

©Robert J. Cloutier, All Rights Reserved

 2

Abstract

APPLICATION OF PATTERNS TO
SYSTEMS ARCHITECTING

Abstract

A pattern is a model or facsimile of an actual thing or action, which provides some
degree of representation (an abstraction) to enable the recreation of that entity over and
over again. The existence of patterns is almost universal. Patterns are evident
everywhere. The human mind seems to perceive patterns without conscious thought - we
notice an individual’s personal habits because they form patterns. Patterns are also used
in a number of engineering disciplines – software engineering, requirements engineering
and mechanical engineering to name a few. The purpose of this paper is to discuss
motivations for using patterns in architecting complex systems.

Author Biography

Robert J. Cloutier

Rob works for Lockheed-Martin Corporation in Moorestown, NJ where he is in the
Enterprise Architecture organization modelling systems of systems architectures. He
holds a B.S. from the United States Naval Academy, an M.B.A. from Eastern
University and is a Systems Engineering Doctoral Candidate at Stevens Institute of
Technology. He has over 20 years experience in systems engineering, software
engineering, and project management in both the commercial and the DoD industries.

Robert J. Cloutier, Principle Engineer
Lockheed Martin Corporation, MS2

Mailstop 13000-2
199 Borton Landing Road

Moorestown, NJ 08057
(856)638-7437

robert.j.cloutier@lmco.com

 3

Patterns Background and Examples
 Music demonstrates repeating patterns to make it easier to learn the tune. Three childhood
songs have the same tune – Twinkle, Twinkle Little Star; Baa, Baa Black Sheep and The Alphabet
Song. All are from the same Mozart tune. Mathematics is full of patterns – methods to solve
similar problems: sum of squares, quadratic equations, and standard integration of common
functions, etc. [Solingaros 1999]. The use of cul-de-sacs by civil engineers/architects in a housing
development is another example of a commonly found pattern. Other examples of patterns are
geometric forms – a large circle and a small circle differ only by the radius.

 Most attribute the architect Christopher Alexander as being the first to understand the value of
patterns to systems. In Alexander’s case, it was patterns in the construction of homes, buildings,
and communities. Throughout the 60’s and 70’s Alexander was striving to improve on the art of
urban design by creating patterns that other architects could use. Alexander stated that “Each
pattern is a three-part rule, which expresses a relation between a certain context, a problem, and a
solution…” [Alexander 1979]. He believed patterns could always be improved upon. “We may
then gradually improve these patterns which we share, by testing them against experience…”
[Alexander 1979].

Alexander created what has become known as the Alexandrian form of documenting patterns.

It is straightforward in its contents – 1) Pattern Name, 2) Context 3) Problem, and 4) Solution.
[Alexander 1977]. The name of the pattern must be descriptive and represent the solution the
pattern is addressing. This becomes critical for pattern reuse. If the pattern name is cryptic or has
some meaning to the pattern author, yet is meaningless to those looking for a pattern to solve their
particular pattern, there is no value in the pattern being documented in the first place. To
demonstrate this concept, Alexander outlines the pattern language for a farmhouse in the Bernese
Oberland [Alexander 1977].

• North South Axis • Two Floors
• West Facing Entrance Down the Slope • Hay Loft at the Back
• Bedrooms in Front • Pitched Roof
• Garden to the South • Half-Hipped End
• Balcony Toward the Garden • Carved Ornaments

Alexander was attempting to lower the cognitive load of design by exploring large design

spaces on behalf of the architect [Coplien 1997] [Alexander 1964]. Alexander found that patterns
helped him to express design in terms of the relationships between the parts of a house and the
rules to transform those relationships [Coplien 1997]. If we take the previous sentence and replace
the word “house” with “system,” it easily applies to the notion of systems architecture patterns.

Patterns as a way to Capture Implicit Knowledge

Though one can attain advanced degrees in systems engineering, there are many systems
engineers that do not have a systems engineering degree. Instead, they have acquired enough
experience to be called a systems engineer by working on some number of systems, and by being able
to think about how parts of the system interact, both positively and negatively, with one another.
Some of that experience is captured in project engineering notebooks, or in lessons learned data.
Regardless of the information that is overtly captured regarding specific design solutions, the systems

 4

engineer carries that knowledge forward to the next project. This undocumented knowledge is
sometimes referred to as corporate knowledge or history, implicit knowledge, project history, etc. This
implicit knowledge is useful only to those with which it is shared. According to Hole (2005), the holder
of that implicit knowledge may become a bottleneck in applying that systems experience on current or
future projects.

 Patterns are documented to capture implicit knowledge that has been

implemented in other projects to successfully solve similar problems.

If a pattern only exists as implicit knowledge, it cannot be easily used by others without a form of

repeated storytelling to convey the pattern to others.

What makes implicit knowledge a pattern? Though a pattern may be reusable by the person who

recognizes the pattern first, it is of more value if the pattern is transferable to others so they can apply
the pattern also. The value of patterns in engineering disciplines today is to facilitate sharing of implicit
knowledge. Though a pattern can be transferred through verbal communications, such as storytelling,
it is more accurately and reliably transferred through the more formal approach of documentation. If
the pattern is not documented (written down) it may increase the possibility that the complete pattern
will not be implemented the next time it is used – something may be forgotten or inadvertently left
out. Documenting the pattern greatly increases the possibility of a correct implementation. To this
end, Alexander created what has become known as the Alexandrian form and is straightforward in its
contents – 1) Pattern Name, 2) Context 3) Problem, and 4) Solution.

Pattern Hierarchies

 There are patterns that are applied at different levels of a system based on the appropriateness
of the pattern and the detail of the system at the point in which the pattern is being applied. For
instance, within the software community, there are system patterns (sometimes referred to as
architecture patterns), design patterns and idioms. Figure 1 represents a pattern hierarchy proposed

vanZyl Pattern Hierarchy package MiscUMLDrawings {2/2}

SystemPatterns

SystemArchitecturePatterns

ComponentPatterns

DesignPatterns

System Requirements
Analysis and Design

Software
Requirements
Analysis

Software
Design

Figure 1 – van Zyl Pattern Hierarchy

 5

by van Zyl and Walker [2001] for software systems. It is important to recognize that in their work,
when they refer to the system, they are really referring to the software system. Their work may be
extendable to the broader system, or system of systems architecture with further research. Systems
level patterns may be applicable when representing the highest levels of a system to represent an
entire system or a part of a system. They may also include structure and system boundaries. Based
on knowledge gained by the use of patterns in other disciplines, use of patterns in systems
engineering may also provide the foundation for common design and development as well as a
common means of communicating about the system.

Value of Patterns
 Hahsler [2004] has produced one of the very few sources of quantitative work done on the
value of patterns. He studied the use of design patterns in open source software written in Java. By
studying the log files of configuration controlled open source software, Hahsler was able to isolate
software that utilized design patterns if the use of the patterns was documented in the code
commenting. The team only used the 23 patterns introduced by Gamma, et al [1995]. The dataset
included 988 projects representing over 19.5 million lines of code, with 1,487 different software
developers working on that code. The code represented the entire lifecycle of software
development, from planning to mature software. Descriptive statistics for the sample are shown in
Table 1.

Table 1 – Pattern Usage in Open Source Software Projects Summary Statistics

 By removing the projects that were in the planning phase, and removing projects that had less
than 1,000 lines of code, 519 projects remained for analysis. Several key facts were noted in the
data. Looking at team size, the larger the team size the higher the estimated projects with patterns
as seen in Table 2. In Hahsler’s conclusions, he states that the results show that “design patterns are
adopted for documenting changes and thus for communication in practice by many of the most
active open source developers”.

Table 2 – Estimated Pattern Usage in Open Source Software Projects

 6

Patterns are not silver bullets. However, in other engineering domains, they help solve
difficult problems by leveraging the knowledge gained by someone that went before. Patterns are
models, or abstractions of reality. Today’s systems have become extremely complex. It is difficult,
if not impossible, for a systems engineer to mentally juggle all of the smallest details of a system
anymore. As already demonstrated, patterns can exist at multiple levels. During the course of
system architecture, design and implementation, a project team may use architecture patterns,
design patterns, process patterns, implementation patterns (for software code), machine patterns (to
cut metal for cabinets), test patterns, and validation patterns. At each level of the architecture, the
pattern will contain the correct level of detail for the stage in which it is applied.

Applications of Patterns to Systems Engineering
 This paper has established that patterns are in use in other technical disciplines. As has been
shown, the object oriented software engineering discipline embraced the use of patterns in the mid
90’s. Additionally, requirements engineers have been applying patterns to their field for a number
of years [Gross 2000]. They are exploring the use of documentation patterns to facilitate common
functionality and specifications across systems. In 1998, IEEE conducted a half-day colloquium on
“Understanding Patterns and Their Application to Systems Engineering”. Now there appears to be
a growing interest in the systems engineering community to learn more about patterns and how
they may be applied in our discipline. At the annual symposium for INCOSE in 2004 & 2005,
Haskins [2004, 2005a, 2005b] and Harrison conducted a tutorial entitled Introduction to Patterns
through Writing Systems Engineering Patterns. Haskins has also done work on Systems
Engineering process patterns.

 One of the strongest arguments in favor of using patterns in systems engineering is improved
communications. As in Hashler found looking at the improvement of communications, the author
believes the improved communications of the architecture and design teams, through the use of
patterns, may facilitate the capture of good architectural concepts and implementations and to
preserve them for future projects. Another reason for the need for patterns at the systems
architecture level is the need for a common lexicon between systems architects. By possessing the
ability to describe parts of a design and implementation in the context of known and understood
patterns, a common understanding of the architecture may be fostered as it is in other engineering
disciplines. This has been facilitated with the use of architecture frameworks such as the DoDAF
(Department of Defense Architecture Framework) and implemented as a TAU G2 plug-in.
However, systems architecture patterns may enable the implementation of common design features
across systems (reuse) to reduce overall systems TOCs (Total Ownership Costs) by reducing the
cost to design and produce a new system, as well as reducing the long term maintenance costs due
to commonality.

 In the communities that have adopted the use of patterns, the patterns tend to become
standardized as they are implemented on other programs and as they are presented at professional
conferences and in professional journals. When this standardization happens within a company, it
fosters reuse of designs and even code that is generated from the architecture patterns. This reuse
has improved efficiency and productivity [Coplien 1997]. Based on Coplien’s experience, one
could argue that documenting current patterns may reduce the documentation costs and complexity
for any company that elects to pursue systems engineering patterns. Finally, as was found at Bell
Laboratories, architecture patterns provide expert advice to novice architects. Going hand-in-hand

 7

with that is the fact that architectural patterns can help control the complexity of an architecture by
standardizing it on a well known and practiced pattern. The work on the SysML standard may be a
very useful adjunct to the use of patterns in systems engineering. With the integration of SysML
and UML, there may be an evolving syntax that will be used by system architects, systems
engineers and software engineers to define the problem and describe the solution using the same
toolset.

 Earlier in this paper, van Zyl’s pattern hierarchy was shown. Extending that to a broader
application, the following systems pattern hierarchy is proposed as shown in Figure 2.

Pattern Hierarchy 11-1-2005 package PatternRelationships {1/2}

OrganizationPatterns

BusinessPatterns

SystemArchPatterns

SystemAnalysisPatterns

SystemDesignPatterns

SW_ArchPatterns

SW_AnalysisPatterns

SW_DesignPatterns

SystemRqmnt

SW_RqmntPatterns

HWDesignPatterns

CreationalPatterns

BehavoiralPatterns

StructuralPatterns

MissionPatterns

Structural

SysEngRoles

SEActivity

 System Architecture Pattern Types
Structural - Patterns on how to build
SysEngRoles - Patterns for roles
SystemRqmt - Patterns for requirements
SEActivity - Patterns of SE process
SystemProcess - Patterns of processes
 performed by the system

SystemProcess

SystemTestPatterns

SW_TestPatterns

©Robert J. Cloutier, 2005

Figure 2 – Proposed System Pattern Hierchy

 System architecture patterns are broken into four types of patterns – Structural patterns,
Systems Engineering Roles patterns, Systems Requirements patterns, and Systems Engineering
Activities patterns. Carpenter [2002] discusses the systems architecting role for instance, and
makes the observation that the art-like quality of systems architecting depends on the architect’s

 8

ability to recognize complex system requirements patterns and the ability to match those patterns to
architecture solutions. He further claims it is through years of experience that the architect is able
to recognize relationships and patterns, and then apply the correct solution to the problem at hand.

The Argument Against Patterns
 To this point, this paper has discussed the positive side of applying patterns and the potential
advantages of applying them within the systems engineering discipline. However, one must ask,
are there any downsides to using patterns? The list of arguments against using patterns is shorter,
but there are some. The most obvious argument against using patterns is one used many times,
particularly when structure is imposed on highly independent or creative individuals – it may stifle
creativity and innovation. The argument goes on to say that if the guidance in all new work is to
utilize a pattern library to assemble an architecture from the proven patterns, there will be no
breakthroughs.

There appear to be three major reasons to avoid the use of patterns:

1. When addressing new or unique requirements which have not solved before
2. When the requirements require a unique solution, e.g. aesthetics over function
3. When the pace of technological change does not warrant the use of patterns

 However, there are system designs that are so proven and effective, there is no reason not to
define a pattern to represent those system designs and use them over and over. Innovate where it is
most beneficial to the value chain, and use patterns for bread and butter work. In this manner, more
effort can be used in applying creativity to the more challenging and higher risk aspects of the
system.

 The second argument against the use of architecture patterns will be the harder to overcome
because it is an organizational issue – patterns are of little use to the experts. The experts probably
invented some of the patterns. Therefore, unless the expert is a visionary, and understands the
importance of training up the next generation of systems engineers, there is little reason for them to
perform the documentation and validation of patterns. If the experts do not contribute to the
patterns library, the junior systems engineer will go to the pattern library to find an applicable
pattern, and finding nothing to help, after a while will quit checking the library.

 The third argument is self evident – if technology is evolving so quickly, it is unlikely a
solution will be implemented enough times to emerge as a pattern. Or, if the technology is evolving
so rapidly, using older patterns in the solution will not satisfy the forces driving the problem
context.

 The problem with this argument is evident in the aerospace industry – the experts are aging, or
have begun to retire. The younger engineers are re-learning standard designs because the experts
with the understanding walked out the door. The design experience that enabled senior engineers to
recognize a problem and a pattern solution are no longer available and that knowledge was not
documented as a pattern. Therefore, costs are higher for a new system because there is little or no
reuse from one system to another. If, as engineers, we don’t learn from history, we are destined to
repeat it. What a colossal waste of time and energy.

 9

Adopting Patterns for Systems Architecting
 As was mentioned earlier, the adoption and standardization of patterns due to professional peer
reviews at conferences and in professional journals. When this standardization happens within a
company, it fosters reuse of designs and even code that is generated from the architecture patterns.
This reuse has improved efficiency and productivity [Coplien 1997]. Based on Coplien’s
experience, it might be argued that applying patterns to complex systems architectures, system
complexity may be more manageable and affordable. Finally, as was found at Bell Laboratories,
[software] architecture patterns provide expert advice to novice architects. Going hand-in-hand
with that is the fact that architectural patterns can help control the complexity of an architecture by
standardizing it on a well known and practiced pattern. In this sense, patterns generate architectures
[Sanz 1999] [Douglass 2003] [Rubel 1995].

 What are some of the reasons to use patterns? In 1996, James Coplien was working for Bell
Laboratories. In a paper published in an IEEE Journal, he recalls that they were:

“… mining the patterns of classic embedded systems to capture the core competencies
of their business… Why? We can trace availability and fault tolerance to patterns, and
we have extracted those patterns from the minds of long-standing experts.” (Coplien
1997).

 Alexander began with form and context. Martin Fowler refers to patterns as useful ideas that
may translate to another context. Senge describes his archetypes (process patterns) as a method for
clarifying and testing mental models of systems. Brandon Goldfedder states that “One of the key
goals of patterns is to capture the solutions to reoccurring problems (and the constraints or context
in which they can be used) in a manner which is easily accessible to others.” [Goldfedder 2002].

Patterns have been embraced in other engineering and technical disciplines. They may be
beneficial to Systems Engineers in controlling the complexity of systems, providing a common
language to discuss similar aspects of systems, and capturing good architecture concepts for
reuse. However, research is necessary before systems engineers can use them extensively. There
is anecdotal evidence that systems architects on large projects are applying patterns. This is
consistent with Hahsler’s findings that the larger the team, the more useful patterns become.

Conclusion

This paper has presented a historical perspective to the use of patterns in engineering disciplines.
The value of patterns in the improvement of communications between the best open source
software developers was shown. The paper went on to discuss why a systems engineering
organization should capture valuable implicit knowledge in the form of patterns when appropriate.
After a discussion of the problems with patterns, the author concluded the paper with a discussion
of the potential value of implementing patterns within the systems engineering discipline.

 10

References
[Alexander 1964] Alexander, Christopher. Notes on the Synthesis of Form. Cambridge: Harvard

University Press, 1964.

[Alexander 1977] Alexander, Christopher. A Pattern Language. New York: Oxford University
Press, 1977.

[Alexander 1979] Alexander, Christopher. A Timeless Way of Building. New Your: Oxford
University Press, 1979.

[Buschmann 1996] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System Of Patterns. West Sussex, England: John Wiley &
Sons Ltd., 1996.

[Carpenter 2002] Carpenter, Robert Glenn. SystemArchitect’s Job Characteristics and Approach to
the Conceptualization of Complex Systems. Doctoral Dissertation presented to the Faculty of
the Graduate School University of Southern California, 2002.

[Coplien 1997] Coplien, James O. “Idioms and Patterns as Architectural Literature”. IEEE
Software Special Issue on Objects, Patterns, and Architectures. January 1997.

[Douglass 2003] B.P. Douglass, Real-Time Design Patterns: Robust Scalable Architectures for
Real-Time Systems. Reading, MA: Addison-Wesley, 2003.

[Gamma 1995] Gamma, E., Helm, R., Johnson, J., Vlissides, J., Design Patterns: Elements of Reusable
Object Oriented Software. MA: Addison-Wesley. 1995.

[Goldfedder 2002] Goldfedder, Brandon. The Joy of Patterns. Boston: Addison-Wesley. 2002.

[Gross 2001] Gross, D. Yu, E., From Non-Functional Requirements to Design through Patterns
Requirements Engineering. Springer-Verlag. 6(2001) 1: 18-36.

[Hahsler 2004] Hahsler, Michael. 2004. Free/Open Source Software Development. Pages 103-124.
Edited by Koch Stefan. Idea Group Publishing.

[Haskins 2004b] Haskins, Cecilia and Harrison, Neil, “Introduction to Patterns Through Writing
SE Patterns Tutorial”, Proceedings of the INCOSE 14th Annual International Symposium
(Toulouse, France, June 20th – 24th, 2004).

[Haskins 2005a] Haskins, Cecilia, “Application of Patterns and Pattern Languages to Systems
Engineering.” Proceedings of the INCOSE 15th Annual International Symposium (Rochester,
NY, July 10th-13th, 2005).

[Haskins 2005b] Haskins, Cecilia and Harrison, Neil, “Introduction to Patterns Through Writing
SE Patterns Tutorial”, Proceedings of the INCOSE 15th Annual International Symposium
(Rochester, NY, July 10th-13th, 2005).

[Hole 2005] Hole, Eirik. “Architectures as a Framework for Effective and Efficient Product
Development in a Dynamic Business Environment”. Proceedings of the 2005 Conference on
Systems Engineering Research, March 2005.

[Rubel 1995] B. Rubel, “Patterns for generating a layered architecture,” in Pattern Languages of
Program Design, D.C. Schmidt and J.O. Coplien, Eds. Reading, MA: Addison-Wesley, 1995,
pp. 119-128.

 11

[Salingaros, Nikos, PhD. 1999. “Architecture, Patterns, and Mathematics”. Nexus Network
Journal, Volume 1, pages 75-85. Downloaded 10/25/04. URL:
http://www.math.utsa.edu/sphere/salingar/ArchMath.html

[Sanz 1999] R. Sanz, C. Sánchez-Largo, and A. Juez, “Patterns in control systems” (in Spanish),
Universidad Politécnica de Madrid, Tech. Rep. ASLAB-R-1999-006, Oct. 1999.

[van Zyl] vanZyl, Jay & Walker, A.J., “A Pattern Architecture: Using Patterns to Define Overall
Systems Architecture”. Downloaded 10/22/04. URL:
http://osprey.unisa.ac.za/saicsit2001/Electronic/paper37.pdf

