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 Abstract 
This paper will introduce the concept of Architecture Entropy in the context of systems engineer-
ing and complex systems. Entropy has been explored and discussed in other domains, drawing an 
analogy to its origins in physics. In its original context, entropy describes the degree of random-
ness, or level of chaos, that occurs over time.  The purpose of this research is to explore applica-
tion of the concept of entropy for understanding the vitality of legacy system architectures. The 
discussion is supported by examples of current architecture challenges that may be attributed to 
architectural entropy. Specific examples are presented to better understand the applicability of 
architectural entropy. 

 Introduction 
There exists a considerable body of knowledge related to the topic of systems architecture. 
Searching the IEEE Xplore database, more than 6500 articles matching “system architecture” 
can be found. The majority of the literature regarding system architecture focuses on three topics 
1) the general definition of system architecture and different types of system architectures, 2) 
applying system architecture and, 3) how to produce better system architectures through solu-
tions to observed system architecture issues. This paper will begin to move beyond the current 
literature, delve into the factors involved in the system architecture evolution issues. Isaac [1994] 
recognized the need for this focus and wrote “emphasis from controlling requirements to control-
ling the system architecture” must be made to support evolving systems. This research begins to 
uncover some of the factors relating to complex system architecture which need to be controlled 
to provide the desired output (i.e. sustainable life cycle). This paper will set forth the proposal 
that these factors are actually variables in the entropy of the system architecture. The goal of this 
paper is to introduce the idea of system architecture entropy as a key variable in understanding 
system architectures as they evolve over time, and identify this as an area requiring further re-
search. 

 Current Uses of Entropy 
Classical View of Thermodynamic Entropy. Entropy, as defined from the classical thermody-
namic perspective is a measure of energy that is unavailable to do useful work. This perspective 



  

 

provides a macroscopic view and can also be described as a measure of disorder [Fishbane et al 
1996]. A key aspect of entropy in the classical meaning is that entropy increases as a system un-
dergoes an irreversible process such as the transition from ice to water. It is also of interest to 
note that changes in entropy are path independent. This independence means that a system that 
goes from state X to state Y will have the same change of entropy, independent of how it gets 
from state X to state Y. As defined by Clausius in 1865, entropy is a function of the state of the 
system is: 

TQS /=  

Where S is entropy, Q is heat content and T is Temperature. 
 
Entropy in Information Theory. Claude Shannon’s 1948 seminal paper defined entropy in 
terms of a communications system.  Shannon’s Entropy demonstrated how much information in 
a message is useful based on the probability of receiving a message. The amount of information 
gain between states is inversely proportional to the logarithm of the probability of a state occur-
rence. Shannon’s communication entropy is represented as: 
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where K is a positive constant,  pi is the probability of an event occurring, and log pi is the uncer-
tainty related to that event. 
 
Traffic Management and Entropy. In the field of traffic management, entropy has been 
“adopted to describe the uncertainty of a system” [Hsu et al 2007]. The entropy used for traffic 
detection is based on the adaptation of Shannon’s Entropy [1948] by Pal and Pal [1991]. Pal and 
Pal developed an exponential form for their entropy form. The overall effect is similar to Shan-
non’s entropy except the inverse relation of information follows an exponential relation rather 
than a logarithmic curve. Hsu’s vision-based detection method was developed to track traffic at 
night using the measured variation of exponential entropy. Exponential entropy is expressed as: 
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When applied to the traffic detection problem by Hsu [2007] the higher the entropy values will 
show higher variation and when traffic is light the entropy will be lower. This allows for traffic 
flow at night to be represented by entropy changes. This non-classical example of entropy shows 
that entropy has a useful place outside of classical thermodynamics.  
  
Management Entropy. Another current use of entropy in a non-classical approach can be found 
when “measuring managerial complexity based on entropy theory” [Song et al 2004]. The theory 
of management entropy defined management entropy as “a measure of the contribution made by 
the elements of a system to that system considered as whole or total system” [Song et al 2004]. 
Song’s form of entropy is represented as: 



  

 

r

n

r

r PPH log
1

∑
=

−=
 

This is functionally the same as the Shannon form when K=1. Song uses three aspects of man-
agement: information transformation, organizational function, and management structure with 
the entropy theory to demonstrate his theorem for decreasing management complexity. Song was 
able to demonstrate that by decreasing management entropy the managerial efficiency was in-
creased and the complexity was decreased [Song et al 2004]. The significance of this is that 
downsizing, regrouping, and reformation of enterprises reduces complexity and increases effi-
ciency. One significant contribution of Song’s work is that the management entropy theorem 
puts forth a qualitative method for demonstrating the efficiency of management within an or-
ganization based on the organization’s characteristics (management structure, information trans-
formation, and etc).  This is particular important to this research because system architecture 
characteristics will be used to eventually put forth a qualitative method for demonstrating the ef-
ficiency of a system architecture. 

 System Architecture Entropy 
Parallels between management entropy discussed above, and the concept of architecture entropy 
can be drawn. Architecture entropy is implicitly stated in many papers that address the complica-
tions of system architecture evolution. The literature approaches solutions to the issue of a sys-
tem architecture becoming more complicated as the system architecture evolves. This serves to 
only consider the symptoms, and does not address the systemic problem of architecture entropy. 
What is missing from the literature is the underlying problem of inherited entropy in an architec-
ture that drives the complexity of architecture as the architecture matures. Many authors [Martin 
2002, Isaac and McConaughy 1994, Wilson 1996, Lacerte 2000] discuss increased complexity of 
architectures but do not explore the set of driving forces behind that complexity. Instead, they go 
directly to offering a solution to the one driving force in which they have focused their research. 
These solutions vary and most can be traced to incomplete problem identification. Others begin 
to recognize the characteristics of architecture entropy, and then identify it by another name. For 
instance, Percivall [1994] called it “self-organized criticality” and identified it as a point when 
the complexity of a system will increase until it reaches a critical state. Percivall [1994] also 
noted that the complexity of systems increase and stated “Complexity tends to increase as func-
tions and modifications are added to a system to break through limitations, handle exceptional 
circumstances or adapt to a world itself more complex.” Another author Henderson [1990] dis-
cusses system architecture and places the inability of organizations to shed its preconceived ideas 
of its architecture in order for the system architecture to successfully evolve. From these refer-
ences it can be seen that system architecture is important, complex, and solutions have been 
identified. 
 
Architectures of complex systems are not only influenced by the problem they are solving but 
can also be influenced by the organizational structure in which they are created. Lacerte [2000] 
asserts that “Architectures affect organizations as much as organizations affect architectures.” 
This means that complex system architecture is not developed without organizational influence. 
As the system succeeds, and is improved upon due to its success, the organization changes over 
time, and this organizational change is reflected in the system architecture’s functional and/or 
physical organization. In fact, this organizational complexity may affect the ability for the sys-



  

 

tem architecture to evolve because the organization itself cannot cope with the necessary archi-
tectural change. As the architecture attempts to evolve within an organization that may have al-
ready undergone many structural changes since the inception of the system architecture, consid-
erable tension may develop between the architecture and organizational structure.  
 
This increased complexity is consistent with the classical definition of entropy in that when the 
original system architecture is conceived it has, by definition, some entropy. As the architecture 
evolves, or changes state, the entropy must also change. Understanding the effects of organiza-
tional influence and the documented record that architectures increase in complexity as they 
evolve, architecture entropy must increase with each architectural evolution. The literature does 
not contain a single paper that demonstrates or discusses architecture which becomes less com-
plex as it evolves. Therefore it is concluded that an evolving architecture will only become more 
complex. These complexities increase the level of uncertainty, and this system architecture char-
acteristic is architecture entropy.  
 
Architecture Entropy Variables. New research into system architecture entropy has begun to 
explore and identify the critical variables to enable architecture evolution and organizational 
growth to occur in a complementary manner. Since companies invest much in their system archi-
tectures and many architectures are kept for numerous years this would be a large cost savings 
and advancement in the world of system architecture development. 
 
Given the existing literature and the author’s experience, architecture entropy appears to be a 
function of legacy interfaces, legacy internal components, organizational forces, customer resis-
tance to change, supply chain management, and original system architecture. The legacy inter-
faces may impact and limit new capabilities provided by upgrades to the system. One example of 
how these interfaces can become a limiting factor to upgrades due to constraints can be seen in 
the increases of data transfer bandwidth. In some cases, hard wire interfaces may need to be up-
graded to optical interfaces. Other examples are physical handling systems, and changes in proc-
ess – such as is found in production assembly lines. This compounding change at the interface 
can have more impact on a system then is initially realized. Even changing or updating internal 
aspects of a system can impact the system complexity and affect other parts of the system that 
were believed to be isolated from those changes. 
 
The legacy internal components of a system can impact architecture entropy when a change is 
made that impacts a component(s) in some manor.  As Henderson [1990] stated “Architectural 
innovation is often triggered by a change in a component--perhaps size or some other subsidiary 
parameter of its design--that creates new interactions and new linkages with other components in 
the established product.” These new linkages change the complexity of the system and therefore 
affect the architecture entropy of the whole system. 
 
As presented earlier in this paper, organizational forces also affect entropy. The organizational 
structure at the time of architecture inception may have been smaller and leaner. As a system 
succeeds in the marketplace, the size of the organization necessary to support product line 
changes causes the organization size to grow, and the organizational structure to morph to sup-
port the growing product line. These organizational changes can impact the ability of the archi-
tecture to change or be upgraded within in that organizational structure. This was summed up by 



  

 

Grady [1994] who stated “The intensity of interface problems in a developing system is directly 
proportional to the percentage of interfaces that possess development organization responsibility 
differences...” An additional organizational force is the communication structure within the or-
ganization. That is, how information is gathered, captured, stored, and transferred within and or-
ganization can impact the complexity of evolving system architecture. Customers and stake-
holders may also impact the architecture entropy if they are only receptive to incremental 
changes – and resist revolutionary changes. The American auto industry was resistant to the 
revolutionary adoption of electric vehicles, but embraced E85 technology which is an incre-
mental change to the gas powered automobile. As will be discussed later in this document this 
resistant to revolutionary change as greatly impacted the American auto industry today. The need 
to satisfy stakeholders sometimes causes engineering decisions, or system compromises, to be 
made. These changes and compromises will provide a local optimization which may not be an 
optimal change for the architecture and its increasing complexity.  
 
Supply chain management can also force changes to a system that increases architecture entropy. 
The supply chain management is responsible for keeping track and monitoring parts so that is-
sues such as obsolesce can be handled. If a part becomes obsolete and the system must be main-
tained then changes to the system can be forced that are not ideal and therefore increase architec-
ture entropy.  
 
The final identified component of architecture entropy is the team understanding of the original 
system architecture itself. Once the system architecture is instantiated, every detail must be un-
derstood to successfully upgrade or change it. Many times this idea of successfully understand-
ing the whole architecture at a later time is not achieved and therefore increases the architecture 
entropy. This means that architecture entropy is not only a function of the architecture complex-
ity but also the knowledge required to manage the evolving architecture. 

 Industry Examples of System Architecture Entropy 
Auto Industry. The auto industry is a mature and well documented industry with over one hun-
dred years of architecture evolution to study. As demonstrated by Gorbea [2008] automobile sys-
tem architecture evolvability can be expressed using an Architecture Performance Index Versus 
the Performance. This index tracks the evolution of the automotive architecture from 1885-2008. 
The architectural performance was a function of power to weight ratio, maximum velocity, fuel 
efficiency, and manufacturers suggested retail price (MSRP). Though this performance index 
does not take into account every performance parameter it is meant to be a representative set that 
can be compared throughout the architectures life. Figure 1 shows that from the introduction of 
the internal combustion engine (ICE) architecture around 1920 until around 1948 the ICE archi-
tecture performance increased quickly but from 1948 to 1998 the performance of the ICE archi-
tecture remained virtually unchanged. This is an indication that there must be some force causing 
the architecture performance to slow. That force or part of that slowing force is due to architec-
ture entropy. 
 



  

 

 

Figure 1 - Performance of various automotive architectures from 1885-2008 [Gorbea et al 2008] 

 
The ICE architecture became the dominant architecture for the automotive industry around 1920. 
Henderson [1990] addressed dominant design and makes the point that once a dominant design is 
chosen, engineers do not reevaluate the decisions that have been made for that design. Henderson 
provides a supporting example from the automotive industry where “…engineers did not 
reevaluate the decision to use a gasoline engine each time they developed a new design.”  She 
goes on to point out that a dominant design allows for industries to focus on the components of 
that particular design and not focus on ideas outside that scope. For example once the ICE 
architecture became the dominant design the auto industry paid little to no attention to the steam 
or electric architectures. This could be seen as technology complacency where instead of looking 
for new technology outside the dominant architecture the industry starts to focus and elaborate 
only on the components in its dominant architecture. The reason this becomes important to 
architecture entropy is that with these dominant designs, certain behaviors begin to develop 
within an industry. Henderson refers to one of these behaviors is as information filters. 
Information filters are created to encompass the “knowledge of the key relationships between the 
components of the technology. These filters are created informally over time but they, along with 
formally captured information become the set architecture knowledge. This knowledge is how 
decisions are made regarding the evolution of the system architecture. Once these information 
filters are developed they make it harder for new information about emerging technology since 
that type of information is filtered out by the information filter. In respect to an established 
architecture, these filters can hinder any vision for new technology applied to the established 
architecture. These filters are implicit knowledge and result in information which is not formally 
captured not being passed from one generation to the next [Henderson 1990]. This limited sight 
(not thinking outside the box) and lack of formally capturing information from the filters can 



  

 

then lead to an increased complexity of the system. The automobile industry has not been 
immune from this information filter affect. The automobile industry has stuck with the ICE 
architecture even while its architectural performance as decreased and while factors outside of 
the architecture (i.e. increased energy prices) have begged for change. This drives the automotive 
industry into sticking with what it knows and continues to create more and more complexity 
within the ICE architecture. One example of this is that instead of switching architectures, to 
electric or hybrid, altogether the American auto industry has decided to focus on automobiles 
which consume E85 (15% gas and 85% Ethanol). This resistance to change has only increased 
the complexity of the ICE Architecture and is another factor into the architecture entropy.   
 
1aval Shipbuilding. The U.S. Navy provides opportunities to support the concept of architec-
ture entropy. The Navy has been producing large scale complex systems for over 100 years. The 
large amount of data on Navy architectures makes it an appropriate industry to investigate. 
 
The new DDG-1000 guided missile destroyer is an extreme case of architecture entropy. Initial 
guidelines for the ship platform were conceived in the strategic planning documents “…From the 
Sea” [O'Keefe et al 1992] and “Forward from the Sea” [Dalton et al 1994].  These documents 
defined the goals and objectives towards littoral warfare superiority in a post-Cold War world 
and the platforms that would support those plans. DDG-1000 has effectively been under devel-
opment since “…From the Sea” was published in 1992 and an actual ship has yet to be launched. 
Currently some of the embedded technologies are not sufficiently mature for product implemen-
tation and the architecture is now not able to adapt to meet the evolving requirements. The DDG-
1000 architecture stands in stark contrast when compared to the development of the LST (Land-
ing Ship Tank) transports of World War II. The LST architecture was conceived by Winston 
Churchill after Dunkirk (1940). The United States took over redesign and engineering functions 
in November 1941 and the first mass-produced LST was launched in December 1942. Over one 
thousand (1051) LSTs were eventually produced before the war ended in August 1945 [Encyclo-
pedia Britannica 2008].  This meant in only five years the LST architecture was conceived, re-
designed, and mass produced compared to the stagnate DDG-1000 which after more then 16 
years of architecture work has yet to even have one single unit produced. 
 
Weapons systems are procured to have a “qualitative superiority over an enemy’s weapon sys-
tem or neutralize the enemy’s superiority – not only today but in the future.” [Charette 2008] The 
DDG-1000 program has evolved with the assumption that all competitors (i.e. expected ene-
mies), their strategies, tactics, and development were understood. In late 2007 and early 2008 
evidence came in that the DDG-1000’s planned capabilities could not address an emergent threat 
scenario from ballistic cruise missiles [McCullough and Stiller 2008]. Unfortunately the architec-
ture has been defined to the point that it cannot be changed or easily evolved to meet require-
ments outside its design envelope. The Navy is now dealing with a disruptive counter to the 
DDG-1000 architecture.  We can establish a parallel by looking at this situation via the lens of 
Christensen’s The Innovator’s Dilemma [1997] and view the issue of ballistic cruise missiles as a 
disruptive innovation competing with an existing architecture (DDG-1000). A disruptive tech-
nology has the hallmarks of being initially less capable, cheaper, smaller, and easier to use 
[Christensen, 1997].  While ease of use may be arguable in the case of ballistic cruise missiles, 
the cost proposition of a single missile against a ship and trained crew is certain. In this case, the 
market is control of the littoral area.    



  

 

 
The basic Christensen model is shown in Figure 2. In this figure, the horizontal axis represents 
time and the vertical axis represents a particular characteristic.  
 

 

Figure 2 - Disruption in Marketplace [Christensen 1997] 

 
In Figure 3 we see the effect a disruption causes to a system architecture. For simplicity of repre-
sentation we will show disruptions as instantaneous state changes. In the real world this disrup-
tion would more likely match a logistics curve. The vertical axis now represents a scale of one 
characteristic relative to another. This is effectively adding another dimension for comparing the 
architectures. Adapting Song’s [2004] multidimensional entropy model from management rela-
tions to architectures might be an appropriate exercise for future research.  

 

Figure 3 - Market timing effects from disruptions 

 
We attempt to show the three-dimensional aspect of this model in Figures 4 & 5. These figures 
show how a later innovation can compete with established technology. The established technol-
ogy is more capable but only along one dimension. It has little importance or value on the other 



  

 

scale. This illustrates in concept the circumstances affecting the DDG-1000 program and its in-
ability to overcome the entropy of it architecture. 
 

time  

Figure 4 - Disruption in aspect view 
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Figure 5 - Disruption in forward view 

 
According to Wilson [1996] many Navy systems were designed with “architectural constraints 
which may no longer apply.” This idea of architectural constraints that were designed into the 
system and at some point becomes non-applicable making the architecture harder to reengineer 
or upgrade. Wilson goes on to state that the “longer term goal is the ability to effectively trans-
form complex legacy systems into systems that can evolve gracefully over time.” The issue of 
system architecture evolveability is now being addressed by the Navy’s implementation of a new 
system architecture process.  
 
Traditionally, a ship’s hull, mechanical, and electrical systems (HM&E) have been designed 
separately from the combat systems.[Wells 2006] The new Navy architecture process, called To-



  

 

tal Ship System Engineering (TSSE), intends to take the old methods of Navy ship building and 
merge them with current system standards and processes for integration. The Navy established a 
TSSE curriculum at its postgraduate school in 1992 [Naval Postgraduate School 2008].  The in-
tent was to emphasize integration across technologies and disciplines using systems engineering 
practices.   The TSSE discipline was used for the DDG-100 and had been used in the predecessor 
SC-21 program. [Clayton, 2002]  Despite the integrated effort to meet the design requirements, 
we argue that the inability to meet updated strategic requirements can be described as architec-
ture entropy 
 
Microsoft Windows

TM
. We could focus on computer operating systems in general. However the 

Microsoft Windows story is sufficiently detailed to provide a case study of architecture entropy. 
 
Microsoft Windows has been a Microsoft product for over twenty years. The original Windows 
1.0 (1985) was a graphical program loader that ran as an application on top of the DOS (Disk 
Operating System) environment. This fundamental architecture layering was used for Windows 
2.0 (1987), 3.0 (1990), Windows 95 (1995), 98 (1998), and the Windows ME (2000) systems. 
The underlying core operating system of these environments all ran on some form of DOS with 
all the limitations that involved. In 1993 with the introduction of Windows NT, Microsoft had a 
parallel product line that leveraged off the original Windows user environment but was inte-
grated in a way that made the GUI fully part of an operating system. This NT architecture ran 
parallel to the DOS architecture until Windows XP was introduced in 2001.  
 
Microsoft’s problem with architecture entropy started in its DOS days. As other companies 
started to use its architecture, these companies discovered undocumented functions that could 
enhance their product’s performance [Schulman and Maxey 1990][Schulman 1994]. Microsoft 
had two main reasons to hold some functions as undocumented. First, undocumented functions 
could provide Microsoft a competitive advantage in applications development. Second, undocu-
mented functions could be used in an experimental sense in that they could be changed or depre-
cated without having effect on the official system Application Programming Interface (API). 
Third, some undocumented functions were developed to apply to certain microprocessor genera-
tions and would be able to be removed with improved processors. 
 
Unfortunately, for Microsoft, the information about undocumented functions was discovered 
outside of the company through information leaks, debugging, and reverse engineering. Third 
party applications such as Lotus 1-2-3 that exploited these functions had become highly success-
ful. This created a customer requirement for Microsoft to retain those functions that allowed 
those third-party programs to run. Microsoft had maintained backward compatibility with previ-
ous versions of DOS. Thus newer versions of DOS had to retain undocumented but commonly 
used functions and, also replicate certain bugs that were commonly exploited.1 Backward com-
patibility also limits the ability to incorporate improved features since they would break old func-
tions. The overall effect increased the entropy of the DOS architecture by retaining functions that 
had little value for future utilization. 
 

                                                 
1 This backward compatibility of functions and bugs is also practiced in the microprocessor world. Today Intel Pen-
tium processors are designed to retain in their microcode functions and bugs that originated in the 8086 16-bit proc-

essors. 



  

 

Other operating environments such as the Macintosh and Amiga with easy to use graphical inter-
faces were being developed that did not have the entropic weight that DOS had gained. Micro-
soft in turn developed the Microsoft Windows operating system to provide a way to break users 
from requiring DOS. The architectural strength and liability of Windows was in building a sys-
tem with a common Application Programming Interface (API) that could use common libraries 
even though the underlying layer was vastly different (DOS, NT). This type of library system is 
referred to as “Dynamic Link Libraries” or DLLs. Using DLLs provides flexibility to a point. 
However, DLL’s have versioning problems and a newer version of a DLL might break a pro-
gram that had been running perfectly. Microsoft created a whole new entropic problem with this 
DLL nightmare. 
 
The entropic load did not end with the DLLs. The API suffers with age as well. Microsoft has 
continued to implement undocumented functions in the Windows architecture [Schulman and 
Maxey 1992]. Certain functions and operations have become deprecated or changed with time. 
Microsoft tries to manage this via online downloads of major Service Packs to deal with fixing 
bugs and security issues as well as updating and changing the API. With the Service Packs cli-
ents are uniformly told that some programs will cease to work. These updates then require other 
software vendors to have ongoing programs to fix their products to run on Microsoft’s updated 
platform. The result is the product architect unable to evolve the architecture because the Micro-
soft Windows enterprise and third-party applications will suffer. 
 
To date, Microsoft’s approach is not an architectural fix but merely a postponement of the inevi-
table. Part of the issue with architecture entropy is that exogenous forces provide competition. 
This requires the vendor to match features offered by competitors or create new innovative uses 
for their product. The latest incarnation of Microsoft’s operating system – Vista, is intended to 
meet user requirements for new capabilities, ensuring Microsoft would maintain its market pres-
ence. This is a case of a technology push [Walsh et al 2002]. However, the architectural weight 
of the added capabilities built on top of the past Windows architecture has provided no new in-
centive to the market, and in large part, has been viewed by many as a disincentive. Vista re-
quires markedly more storage space (hard drives) and much more memory to operate as 
smoothly for users as a less powerful computer running Windows XP. Anecdotally the perceived 
benefit Vista provides to customers over XP is marginal. This may be a hallmark of high entropy 
architectures. - a system architecture becomes so fragile that the overhead required for new ca-
pability comes at too high a price in performance. The system architecture has too much entropy 
to perform the intended mission effectively. 

 Conclusion 
Entropy traditionally is defined as a measure of energy unavailable to perform work. In an or-
ganization, it is untapped capability, or organizational potential. We can extend this thought 
process to system architecture entropy, and define it as a measure of disorder in the system archi-
tecture that grows more disordered over time as the architecture evolves to satisfy new require-
ments. When this happens, the level of entropy increases. Examples of this include increases in 
the number of interfaces within an architecture - the entropy – or potential for unused capability 
increases 
 



  

 

This paper has formally identified and put forth the concept of system architecture entropy. Since 
one goal of legacy systems architecture is to evolve existing systems in a graceful manner, the 
initial system architecture must be designed with the full understanding of system architecture 
entropy. The factors that go into architecture entropy were identified and discussed. 
 
System engineers performing with architecting responsibilities can immediately begin to apply 
the ideas and concepts set forth in this paper to their everyday practice.  While many have ex-
perienced the organizational influence on system architecture, beginning to address this phenom-
ena in the context of entropy and the factors that play into that entropy is a leap forward in the 
thought process that should go into creating an architecture. Through the examples provided in 
this paper current practitioners should be able to apply those lessoned learned to their own de-
velopment of architectures to decrease the impact of entropy. 
 
The authors intend on continuing research on this top to expand our understanding of the impact 
and cost of system architecture entropy. Other research questions to be investigated include: 1) 
what role does architecture management play in minimizing the impact of architecture entropy, 
and 2) once the impact and cost of system architecture is better understood, how can systems en-
gineers cope with architecture entropy. 
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